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338 H. HORII AND S.NEMAT-NASSER

The micromechanics of brittle failure in compression and the transition from brittle
to ductile failure, observed under increasing confining pressures, are examined in the
light of existing experimental results and model studies. First, the micromechanics of
axial splitting and faulting is briefly reviewed, certain mathematical models recently
developed for analysing these failure modes are outlined, and some new, simple
closed-form analytic solutions of crack growth in compression and some new
quantitative model experimental results are presented. Then, a simple two-dimensional
mathematical model is proposed for the analysis of the brittle-ductile transition
process, the corresponding elasticity boundary-value problem is formulated in terms
of singular integral equations, the solution method is given, and numerical results are
obtained and their physical implications are discussed. In addition, a simple

__‘J‘ closed-form analytic solution is presented and, by comparing its results with those of
< the exact formulation, it is shown that the analytic estimates are reasonably accurate in
— the range of the brittle response of the material. Finally, the results of some laboratory
- model experiments are reported in an effort to support the mathematical models.
L] P P PP
g
Eg 1. INTRODUCTION
= w The overall mechanical response of brittle solids, such as rock and concrete, is known to be

greatly influenced by temperature, pressure, and strain rate; the pore fluid pressure, if present,
is also important, but in this paper we consider the behaviour of ‘dry’ samples. At suitably
high temperatures and low strain rates, the inelastic deformation of materials of this kind is
rate-dependent, stemming from diffusion, nonlinear creep, and even recrystallization. Below
a certain temperature and above a certain strain rate, the overall inelasticity is caused by
essentially rate-independentslip and twinning in single crystal constituents, or by microfracturing
and faulting, depending on the magnitude of the overall confining pressure (see, for example,
Ashby & Verrall (1977), Tullis & Yund (1977), Paterson (19%78), Tullis (1979) and Kirby &
Kronenberg (1984)).

In this paper, attention is focused on the inelastic deformations associated with low
temperature, essentially rate-independent processes that lead to the following failure modes,
depending on the magnitude of the confining pressure: (1) axial splitting of the sample by
macroscopic cracks extending in the direction of axial compression, in the absence of any lateral
confining pressure; (2) faulting or macroscopic shear failure, when axial compression is
accompanied by moderate confining pressure; and finally, (3) ductile flow in the presence of
a suitably large confining pressure (see, for example, Griggs & Handin (1960), Fairhurst &
Cook (1966), Mogi (1966), Holzhausen (1978), Holzhausen & Johnson (1979), Paterson
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— (1978) and Kranz (1983), who review the literature and give an extensive list of references).

< S The overall axial-stress—axial-strain curve associated with low confinement includes a peak

E ~ stress followed by a sharp descending portion. The resistance to further straining beyond the

[ g peak stress increases with increasing confining pressure, and eventually there emerges a

= stress—strain curve akin to ductile metals, with a knee and a work-hardening portion.

E @) Furthermore, the fault zone which is a sharply defined failure plane at low pressures, broadens
v

to a zone of intense deformation with increasing pressure. With further increase in the confining
pressure, a transition from brittle to ductile response gradually takes place as the macroscopic
deformation of the sample becomes more uniformly distributed throughout the sample (see,
forexample, Donathetal. (1971)). Anincrease in temperature hasanimportantrole in promoting
ductility. The confining pressure associated with the brittle—ductile transition decreases with
increasing temperature.

For the temperature range considered here, where rate effects may be ignored, microcracking
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BRITTLE FAILURE IN COMPRESSION ‘ 339

and plastic flow of the crystalline constituents are the two major, often competing, sources of
the overall inelastic response of rocks and other similar brittle materials. Microscopic
observations have shown that cracks may nucleate under axial compression at various
microscopic inhomogeneities, such as grain boundary cavities, the interface between dissimilar
constituents, the intersection of slip bands with an adjacent grain, and other possible material
or geometric discontinuities (see, for example, Sprunt & Brace (1974), Olsson & Peng (1976),
Tapponnier & Brace (1976), Wong (1982) and Kranz (1983)). With a relatively low confining
pressure, there emerges a narrow region of high crack density, which eventually becomes a fault
plane at the axial stress close to the ultimate strength (see Scholz (1968), Hoshino & Koide
(1970), Hallbauer et al. (1973), Olsson & Peng (1976), Lockner & Byerlee (1977) and Wong
(1982)). At high values, on the other hand, the confining pressure suppresses this process,
leading instead to either cataclastic flow characterized by distributed microcracking, or to
ductile flow produced by plastic deformation throughout the sample, depending on the material
and the temperature and pressure levels. In granite, for example, Tullis & Yund (1977) report
throughgoing faults observed at low temperatures in axially compressed samples under less than
500 MPa (5 kbar) pressure, and under 750-1500 MPa (7.5-15 kbar) pressure there is cata-
clastic deformation consisting of grain-size faults without any macroscopic faulting, up to
15-209, axial shortening. A transition from dominantly microcracking to dominantly disloca-
tion motion is reported by these authors at approximately 300-400 °C for quartz and
550-650 °C for feldspar. For pyroxenes, on the other hand, Kirby & Kronenberg (1984) report
that, at suitably high pressures, ductile flow by low-temperature plastic flow can be induced
even at room temperature. Similar results are reported for marble and limestone, where
cataclastic microcracking can be essentially suppressed at ordinary temperatures with high
enough confining pressures (see Donath ef al. (1971) and Tobin & Donath (1971)).

Based on microscopic observations, various mathematical models have been introduced in
an effort to analyse the failure process of brittle materials in compression. Most of these models
are grounded in the idea that frictional sliding of a pre-existing crack produces, at the crack
tips, tension cracks that grow in the direction of maximum compression (see McClintock &
Walsh (1963), Kachanov (1982), Ashby & Cookley (1986) and Steif (1984)). In addition,
model experiments on glass and photoelastic plates containing pre-existing cracks or slits have
been performed to illustrate the process of out-of-plane crack growth in compression (Brace
& Bombolakis 1963 ; Hoek & Bieniawski 1965). In particular, Nemat-Nasser & Horii (1982)
and Horii & Nemat-Nasser (1985a) have examined the consequences of a straight flaw model
endowed with frictional resistance and cohesion, by formulating and solving the associated
two-dimensional elasticity problem and by comparing the results with the corresponding model
experiments. These authors show analytically and verify experimentally that, under axial
compression, tension cracks nucleate from the tips of the flaw at an angle close to 70° with
respect to the flaw orientation, and grow with increasing axial load, curving toward the
direction of the maximum axial compression. If the axial compression is accompanied by any
amount of lateral tension, the crack growth becomes unstable after a certain crack length is
attained, resulting in axial splitting. If, on the other hand, some lateral compression
accompanies the axial load, the tension cracks grow to a certain length and then stop. To model
faulting observed in the presence of a confining pressure, these authors consider a row of flaws
and calculate the length of the tension cracks emanating from the tips of these flaws and growing
under an increasing axial load. Depending on the overall orientation of the row of flaws, it
turns out that such a crack growth process can also become unstable, leading to the formation
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340 H. HORII AND S. NEMAT-NASSER

of a fault. By considering a reasonable relation between flaw size and flaw spacing, Horii &
Nemat-Nasser show that the model predicts the observed strength curves and fault orientations
for sandstone and granite.

The main objective of the present paper is to examine the micromechanics of the transition,
observed with increasing confining pressures, from brittle failure to ductile deformation. It is
shown that, as the confining pressure increases, the unstable growth of tension cracks emanating
from the tips of a row of flaws is suppressed, and with it the associated faulting. With increasing
confining pressure, the contribution to inelastic deformation by microcracking decreases while
that by plastic flow increases. Based on microscopic observation and results of our model
experiments, a mathematical model for the brittle-ductile transition process is proposed. The
model consists of an isolated thin straight flaw with cohesive and frictional resistance, which,
under far-field compression, may nucleate tension cracks at its tips, as well as produce plastic
deformation there. The maximum length that the tension cracks can attain depends on the
magnitude of the accompanying confining pressure (measured by the ratio, o,/0,, of the lateral
pressure, o,, to the axial compression, o,) and on the overall ductility of the material that
surrounds the flaw. The ductility is measured by 4 = K_/7y(nc)}, where K,, is the mode I
fracture toughness, 7y is the yield stress in shear, and 2c is the flaw size. Whether the failure
is brittle, being dominated by the growth of tension cracks, or ductile, being dominated by
the growth of plastic zones, depends on the magnitude of the stress ratio, o,/0,, and the overall
ductility, 4. The influence of temperature enters implicitly through the associated values of
fracture toughness, K, and yield stress, 7y. Since the former increases and the latter decreases
with increasing temperature, 4 increases with increasing temperature. It is shown that when
4 is suitably large, the growth of tension cracks can be essentially suppressed by suitable
confinement. For 4 of the order of a few percent, however, both tension cracks and plastic
deformation can occur. The model therefore seems to capture some of the essential features
observed in the brittle—ductile transition process. It is shown in this paper that it also yields
quantitative predictions in good accord with experimental results.

This paper is organized in the following manner. In §2 previous results on axial spllttmg
and on faulting are reviewed, and new results of quantitative model experiments are presented,
emphasizing the effect of the confining pressure: low pressure suppresses tension crack growth,
resulting in the change of the failure mode from axial splitting to faulting, and high pressure
suppresses the faulting. In this section, new closed-form but approximate analytic expressions
are also developed for the stress intensity factors at the crack tips. By using the numerical results
of the exact formulation, it is shown that the approximate expressions yield reasonable estimates
over the entire range of the crack length. Next, § 3 considers the micromechanics of brittle-ductile
transition. In this section a two-dimensional elasticity boundary-value problem for a pre-existing
flaw with associated tension cracks and plastic zones is formulated in terms of singular integral
equations, the solution method is presented, numerical results are given, and their physical
implications are discussed. In addition, a simple, closed-form analytic solution is presented and,
by comparing its results with those of the exact formulation, it is shown that the analytic
estimates are reasonably accurate when the ductility, 4, is about 0.1 or less. In this section the
results of some model experiments are also reported. These serve to illustrate the growth of
plastic zones in the neighbourhood of the tips of the pre-ex1st1ng flaw, under large confining
pressures.
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BRITTLE FAILURE IN COMPRESSION 341

2. AXIAL SPLITTING AND FAULTING

In this section we briefly review the micromechanics of axial splitting and faulting, outline
mathematical models recently developed for analysing these failure modes, and present some
new, simple closed-form analytic results and some new quantitative results of model
experiments.

Rocks and other materials of this kind are highly heterogeneous at the grain-scale microlevel.
In granite and gabbro, for example, the constituents, such as quartz, feldspar and biotite, have
considerably different mechanical properties and therefore respond differently to the applied
loads. In addition these materials contain initial microdefects such as cavities and cracks. As
a consequence, the imposed overall deformation is accommodated locally by extensive micro-
cracking, which often persists even into the ductile range. The cracks are nucleated at grain
boundary cavities of low aspect ratio, at the boundary of soft inclusions with easy glide, such
as biotite, or at pre-existing healed cracks. In marble, on the other hand, cracks are nucleated
at the intersection of lamellae or slip bands and the boundary of an adjacent unfavourably
oriented crystal. Whatever the nature of such an incompatibility, it serves as a stress
concentrator, resulting in microcracking. The microcracks then grow in response to the
increasing applied loads, producing failure by axial splitting of the uniaxially compressed
specimen (no confinement), or by faulting when the axial compression is accompanied by
moderate confining pressures. The existence of the confining pressure limits the microcrack
length. Microscopic studies by optical and scanning electron microscopies and by acoustic
emission seem to suggest that the mechanism of overall faulting initially involves uniform
nucleation and growth of microcracks throughout the sample, followed by accelerated cracking
over a central region of the sample, as the peak axial compression is approached. The highly
cracked region then forms the eventual macroscopic fault at axial stress values in the
neighbourhood of the peak stress (see Scholz (1968), Hoshino & Koide (1970), Hallbauer
etal. (1973), Olsson & Peng (1976), Lockner & Byerlee (1977) and Wong (1982)). Most of the
microcracks are in the axial direction, and macroscopic faulting seems to occur by the linking
up of an echelon of tensile microcracks. (It should be noted that there is some question whether
or not the highly cracked zone which becomes the fault is formed very close to the peak stress,
as reported, for example, by Hallbauer ¢t al. (1973), or whether it can emerge at lower stress,
as reported by Soga et al. (1978).)

2.1. Mathematical model: splitting

To model the complex micromechanisms involved in the failure of rocks in compression, it
is necessary to introduce dramatic simplification and ‘homogenization’ of one kind or another.
An essential feature of the involved physical process is that the local inhomogeneities serve as
stress concentrators, promoting microcracking. This feature may be captured by a model that
embeds a ‘typical inhomogeneity’ in an infinitely extended homogeneous solid that imposes
on the inhomogeneity the constraints associated with the overall stiffness of the remaining
aggregates. A rather simple two-dimensional model of this kind that lends itself to rigorous
analytical calculation is a straight ‘flaw’ endowed with frictional resistance and cohesion,
embedded in a linearly elastic homogeneous solid. In figure 1 the pre-existing flaw PP’ is
sketched together with the associated curved tension cracks PQ and P’Q’, under axial and
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)

Ficure 1. Pre-existing flaw PP’ and curved cracks PQ and P'Q)’.

lateral compressions ¢, and &, || > |o,|; compression is viewed negative. With a coordinate
system ¥, ¥, as shown, the conditions on the pre-existing ‘frictional and cohesive’ flaw PP’ are

Uy =y, Tuy=—T,+puo,, (2.1)

and on the curved tension cracks PQ and P’Q)’, we must have
0-8 = Tfﬂ = O, (2.2)

where 7, is the cohesive stress, p is the coefficient of friction, o, is the normal and 7,,, is the
shear stress on PP’, u, is the displacement in the y-direction, and o, and 7,, are the polar
components of the hoop and shear stresses on PQ, In (2.1) superscripts + and — refer to the
value of the corresponding quantity calculated immediately above and below the x-axis, along
the y-direction.

An exactformulation of this boundary-value problem has been given by Horii & Nemat-Nasser
(1983, 19854) in terms of singular integral equations. These singular integral equations have
been solved by these authors, using the rather effective numerical scheme recently proposed
by Gerasoulis & Srivastav (1981). For the sake of completeness, this exact formulation is
summarized in Appendix A. Here, however, we present a closed-form, but approximate,
estimate of the stress intensity factors K; and Ky; at the tips of the extended tension cracks PQ
and P’Q)’, when these cracks are regarded as straight lines (see figure 2a). This solution yields
good estimates of the stress intensity factors for both small and large crack length / and is
different from the analytical estimates recently developed by Ashby & Cookley (1986) and Steif
(1984).
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(a) ®) | 1 a

K

FiGure 2. () Pre-existing flaw PP’ and straight cracks PQ and P’Q)’; (4) a representative tension crack QQ’
' with splitting forces F.

2.1.1. Analytic estimate

In figure 25 we consider a representative single crack QQ’ of length 2/, subjected at its centre
to a pair of collinear splitting forces of common magnitude F, which make an angle y with
the o,-direction. These forces represent the effect on the representative crack QQ’ of the sliding
of the pre-existing flaw PP’, under the action of the resolved shear stress. We calculate F by
estimating the driving shear stress 7* on the pre-existing flaw, as follows:

F = 2¢7%,
(2.3)
T* = —}(0,—03) sin 2y — 7.+ pj[0, + 0y — (0, —0,) cos 2?’]-}
The representative crack QQ)’ is also subjected to the far-field stresses o, and o,.
The stress intensity factors at Q and Q’, produced by the splitting forces, F, acting alone,

are
K; = Fsin 6/(nl)}, Ky =—F cos 6/(nl)}. (2.4)

Although these estimates are good when [ is rather large, they break down, becoming
unbounded at crack initiation, when [ is vanishingly small. The stress intensity factor Ky at
crack initiation is estimated by

K; = 3(nc)i7*(sin 16 +sin 36), (2.5)

where tension is taken to be positive (see Nemat-Nasser & Horii (1982, equations (A 5) and
(A 6))). The maximum value of K occurs at § = 6, = 0.392x, which is a root of 9K;/36 = 0.
To match K; given by (2.4), with that given by (2.5), we introduce an effective crack length
2(l+1*) in place of 2/, set (2.4), equal to (2.5) at{ = 0 and 6 = 0.392x, and obtain [* /¢ ~ 0.27.
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344 H. HORII AND S.NEMAT-NASSER"

Now, including the effect of the far-field stresses o, and o, the stress intensity factors at Q
and Q)’ are estimated by

Ky = 2cr* sin /{n(l+ 1*)} + (nl)}[o, + 0, — (0, — 0,) cOs 2(0—7)],} 06
Kyp = —2cr* cos 8/{n(l+*)}— (nl)tl(0, —0,) sin 2(6—7). (29)

We propose to use expressions (2.6) to approximate the stress intensity factors K; and Ky
at the tips, Q and Q’, of the tension cracks PQ) and P’Q)’ shown in figure 2a. The orientation,
0 = 6., of these tension cracks is obtained by maximizing K; in (2.6) with respect to 8. The
common length, /, of PQ and P’Q)’ is obtained by equating the maximum value of K; with
the opening-mode fracture toughness, K,. It remains for us to verify the accuracy of these
estimates. _

Since the exact (numerical) solution of the elasticity problem associated with figure 24 has
been given by Nemat-Nasser & Horii (1982) and Horii & Nemat-Nasser (1985a), the results
are used in figure 3 to check the accuracy of the analytic estimates (2.6). In these figures,

1/e=001

e . e e

80 -
(@) 1/e=0.01 ® =

04

& ¥
Y I 40
;'_‘ 0.2 A8
]
] ]
0 80 0 80

Ky/[losl(me)?]
e

FIGURE 3. (a) Normalized maximum opening-mode stress intensity factor and (b) optimal crack orientation angle
as functions of initial flaw orientation for # =0.3, 7, =0, and ¢,/06, =0. (¢) Normalized maximum
opening-mode stress intensity factor as a function of crack length for indicated o,/a, with g = 0.3, 7, = 0, and
¥ = 45°. Solid curves are from the exact (numerical) calculation (Horii & Nemat-Nasser 19854) and broken
curves are from the analytic estimates (2.6). :
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BRITTLE FAILURE IN COMPRESSION 345

the estimates given by (2.6) are shown by broken lines, and the exact numerical solutions are
presented by solid lines. Considering the simplicity of (2.6), these analytic estimates are
remarkably accurate. Note that estimates (2.6) include the effects of the cohesion, 7, friction,
1, and orientation, ¥, of the pre-existing flaw PP’.

Even though the approximate expressions (2.6) seem to be quite accurate, the analytical
results given in the remaining part of this section are all obtained from the numerical solution
of the exact singular integral equations (see Appendix A).

2.1.2. Discussion of results and model experiments

Figure 4 displays the relation between the axial load and the length of the curved tension
cracks shown in figure 1. It is seen that, under even a very small lateral confining pressure,
the tension cracks emanating from the tips of the flaw grow to a finite length and then stop.
On the other hand, if some lateral tension, no matter how small, accompanies axial
compression, then, after a certain length is attained the crack growth becomes unstable, leading
to axial splitting. Note that the axial stress required for crack initiation is inversely proportional
to ¢t. Hence the bigger and more compliant flaws initiate tension cracks first, i.e. at lower axial
stress levels.

15

0, /0, =004

10

lory|(me)}/ K,

Ficure 4. Compressive force required to attain the associated curved crack length. Solid lines, g = 0.3; broken
lines, # = 0.6. (From Horii & Nemat-Nasser (19854).)

To obtain insight into the process of nucleation and growth of tension cracks in homogeneous
solids containing pre-existing flaws and subjected to overall compressive forces, two-dimensional
model experiments have been performed. For example, Brace & Bombolakis (1963) and Hoek
& Bieniawski (1965) have shown that in a glass plate containing a straight pre-existing crack
oriented at an acute angle with respect to the direction of axial compression, tension cracks
nucleate at the tips of this pre-existing crack, because of the relative sliding of the crack faces,
and grow, curving towards the direction of axial compression. We have made a series of tests
on plates 6 mm thick of Columbia resin CR39 (which is rather brittle at room temperature),

32 Vol. 319. A
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346 H. HORII AND S.NEMAT-NASSER

containing straight slits sawn in by a blade 0.4 mm thick, and fitted with two thin brass sheets
and one Teflon sheet in between, to reduce friction. The samples are held between two thick
Plexiglas plates by means of lightly tightened screws, to prevent out-of-plane buckling under
axial compression.

The model experiments verify the analytical results shown in figure 4. For example, in a
barrel-shaped sample (two-dimensional) containing a flaw at 45° with respect to the sample
axis (see figure 24, of Horii & Nemat-Nasser (1985a)), tension cracks nucleate at the tips
of the slit under axial compression. These cracks then grow in a stable manner curving toward
the axial direction. The barrel shape of the sample produces a small amount of lateral tension,
and once a critical length is attained, spontaneous crack growth takes place, leading to axial
splitting of the specimen as predicted by the results shown in figure 4. On the other hand, if
the sample is in the shape of a dog bone (see figure 34,5 of Horii & Nemat-Nasser (19854)),
a small amount of lateral compression will accompany the axial compression, and therefore
the tension cracks will attain a certain length and cease to grow after that.

Nemat-Nasser & Horii (1982) suggest that this model has a strong bearing on observed
phenomena of axial splitting, exfoliation (or sheet fracture) and rockburst. They report the
results of a number of model experiments that seem to support their proposal (see their figures
13-15 for exfoliation, figure 16 for rockburst, and figures 17-20 for axial splitting). These
experiments all have been qualitative. Here we shall report the results of a quantitative model
experiment on axial splitting.

Figure 54, plate 1, shows the sample before loading. It contains a rather large number of
flaws of different sizes and orientations. (In all model experiments, the flaws are 0.4 mm thick,
straight slits fitted with two metal sheets and one Teflon sheet in between.) Figure 55—d shows
the specimen under overall axial compression with zero lateral confining pressure. Tension
cracks nucleated at larger flaws extend in the axial direction, linking with other cracks and
flaws, and the sample fails by axial splitting. Note that many smaller flaws have not even
nucleated any cracks in the failed sample.

In figure 6, curve S shows the corresponding axial stress o, plotted against the axial strain
€,; both are shown positive, but o, is compression and ¢, is shortening. (Note that g, = 0 in
this experiment. The curve marked F in figure 6 corresponds to faulting and will be discussed
in §2.4.) The points b~d marked on the stress—strain curve S correspond to figure 5b—d,
respectively. Tension cracks form at the point marked S, after which the stress-strain curve
displays pronounced nonlinearity, as more tension cracks are nucleated. The sample fails by
axial splitting with a concomitant considerable drop in the axial load.

2.2. Effect of confining pressure on failure mode

To gain insight into the manner in which axial splitting is suppressed by confining pressure
and, instead, faulting is promoted, Horii & Nemat-Nasser (19854) have made a number of
model experiments. Figure 7, plate 2, shows the results of one such experiment. These authors
" prepared two samples with an essentially identical flaw geometry, as shown in figure 7a. Each
sample contains a number of large flaws and a row of smaller flaws. One sample is compressed
axially, without any confinement. It fails by axial splitting (see figure 75), caused by crack
nucleation and growth at large flaws, whereas the smaller flaws do not nucleate any cracks.
The second sample is axially compressed in the presence of some confinement. Initially, the
large flaws nucleate cracks that grow in the direction of axial compression. Because of the
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Ficure 30. Arrested tension cracks emanating from the tips of a 1.8 cm pre-existing flaw for indicated stress ratios,
0,/0y: (a) 0.025; () 0.05; (c) 0.1.

FiGure 31. Arrested tension cracks emanating from the tips of a 3.6 cm pre-existing flaw for indicated stress ratios
0,/0y: (a) 0.1; (b) 0.15.
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FIGURE 6. Stress-strain curves for specimens shown in figure 5a: curve S for no confinement; curve F for
o, =5 MPa.,

presence of confinement, these cracks are soon arrested. Then, as the axial load is further
increased, tension cracks are suddenly nucleated at the tips of the smaller flaws in a row, and
then these cracks grow spontaneously and simultaneously, leading to a fault (see figure 7¢).
This and related model experiments seem to support the microscopic observations of Hallbauer
et al. (1973) who suggest that a region of high-density microcracks emerges close to the peak
stress in an actual sample, and forms the eventual fault.

On the basis of these observations it is reasonable to assume that faulting is caused by the
interactive growth of tension cracks at a suitable set of microflaws, the most essential ingredient
being the interaction effect. A mathematical model that seems to capture this effect and, at
the same time, lends itself to rigorous analysis has been proposed by Horii & Nemat-Nasser
(19854). In the next subsection, we briefly discuss this model and present some new, quantita-
tive results of model experiments that support the theoretical model.

2.3. Mathematical model: faulting

Figure 8 shows a row of identical flaws with tension cracks at their tips. Along the flaws and
the tension cracks the respective boundary conditions (2.1) and (2.2) are assumed. A typical
flaw is denoted by PP’ and tension cracks at its tips by PQ and P’Q)’; v is the angle that the
flaws make with respect to the o,-direction. The cracks make an angle § with respect to
the flaw direction. The orientation of the row with respect to the o,-direction is denoted by ¢.

Because of the interaction effects, the elasticity boundary-value problem associated with this
model is very complex, and its.solution requires special techniques. Recently Horii &
Nemat-Nasser (1985 5) have proposed a method that they call ¢the method of pseudo-tractions’
for the solution of two-dimensional elasticity problems of this kind. With the aid of this method,
the stress intensity factors at the tips, Q and Q’, of the cracks in figure 8 are calculated (see
Appendix B for a brief account and a summary of the basic equations). The angle & is chosen
such that K;/|o,|(rc)} is maximized.

Typical numerical results are presented in figure 9 for the basic model parameters fixed at

32-2
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Fi16ure 8. An unbounded two-dimensional solid with a row of pre-existing flaws PP’ and tension

cracks PQ and P'QY’.

the following values: |o,|(rc)i/K, = 0.1, ¥ = 48°, and d/c = 4. Each curve shows the required
normalized axial compression, |o|(n¢c)i/K,, as a function of the crack length I/c, for indicated
values of the overall orientation, ¢, of the pre-existing flaws. When ¢ is suitably large, the
variation of the axial compression with //¢ is monotonic. For suitably small values of ¢, on the
other hand, the required values of the axial compression begin to decrease with increasing {/c,
once a critical state is reached. For this range of the overall orientation of the flaws, tension
cracks emanating from the flaw tips will suddenly grow by a finite amount at a critical value
of the axial compression, producing what may be regarded as the inception of an overall fault.
Horii & Nemat-Nasser (19854a) seek to explain and quantify rock failure by faulting in terms
of this micromechanical model. 7 -

The free parameters of the model are: the orientation of the individual flaws, y; the spacing
of the flaws, d; and the orientation of the row, ¢. Horii & Nemat-Nasser (19854) assume the
following simple monotonic relation between the flaw size, 2¢, and the flaw spacing, d:

dfcy = b(c/cm)*, b=d[c,, a>0, (2.7)

where 2¢p, is the minimum flaw size with 4, being the corresponding minimum spacing. The
use of a monotonic expression such as (2.7); may be justified on the ground that in a sample
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e
FiGURE 9. Axial stress plotted against crack length for indicated overall orientation of the row of pre-existing
flaws, with d/c = 4, || (rc)}/K, = 0.1, y = 43°, and g = 0.4. (From Horii & Nemat-Nasser (19854).)

of rock, for example, small flaws tend to occur more closely spaced and in greater numbers
than large flaws. However (2.7) should be viewed as an arbitrary assumption employed for
illustration only, and that the relation between flaw spacing and flaw size should be established
by actual microscopic observation. Recent efforts by Wong (19854,b) in this direction seem
to be encouraging. At any rate, here we shall illustrate the mathematical model, using
expression (2.7). ‘

To obtain for a given confining pressure the axial compression at the inception of faulting
for the mathematical model shown in figure 8, we calculate the model parameters y, ¢ and
d/c, such that the critical value of the axial compression (i.e. the value at instability) is
minimized. In this manner we obtain the theoretical ‘strength’ curve, giving the axial
compression at failure as a function of confining pressure, as well as the corresponding
orientation of the fault as a function of pressure. Horii & Nemat-Nasser (1985a) show that
the results of this mathematical model fit the experimental observations reasonably well. The
parameters that must be adjusted are the exponent a and the ratio of the minimum spacing
to half the minimum flaw size, b = d,/c,, in (2.7), and the fracture toughness, K, in the
expression K,/(mcy,)}, which represents an effective normalizing stress. In addition, the
maximum flaw size characterized by ¢y /¢y, is to be fixed, since the flaw size in the sample
is bounded. Figure 10 shows the comparison between the results of the mathematical model
and the data reported by Murrell (1965) on Darley Dale sandstone. For this comparison, the
following values are used for the free parameters: a = 0.18, b = 3.0, ¢y /¢y, = 10, and
K,/(mcy)t = 55 MPa(8 x 10° Ibf in™?).

Figure 10b includes several theoretically obtained solid curves that require additional
explanation, as follows. From the results in figure 9 it is seen that the peak value of the axial
stress increases as the fault orientation, ¢, decreases. The peak values of the axial stress
corresponding to ¢ from 29° to 36° fall within a small range, i.e. |Ao,|(mc)t/ K, = 0.3, above
its minimum value. (This suggests that, according to the mathematical model, the overall fault
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|Ac|(mcy)}/K, = 0

loryl (e )}/ K,
¢/deg

C 1 1 [ 1] ] !

1 1 ) 1 L I
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loal (m'm)’/ K.

FiGure 10. Variation of (a) the ultimate strength, and (5) the overall failure orientation with confining pressure,
compared with the experimental data (points) on Darley Dale sandstone by Murrell (1965). (From Horii &
Nemat-Nasser (19854).)

angle should be sensitive to imperfections. In fact, experimental results by Wawersik & Brace
(1971) show a variation of fault angle of about 15° in Westerly granite.) In figure 105 the ¢
corresponding to the indicated increment, |Ac,|(cy, )}/ K,, in the peak axial load beyond its
minimum value, is plotted.

2.4. Model experiment

The curve marked by F in figure 6 is the result of an experiment on a Columbia resin CR39
plate containing a large number of initial flaws. Two such samples have been prepared (figure
5a and figure 114, plate 3). One was tested under no confining pressure, resulting in axial
splitting, as shown in figure 55-d; see also §2.1.2 and the curve marked by S in figure 6. The
second sample was tested under o, = 5MPa lateral pressure, and the specimen at points b—d
on the curve F is shown in figure 115—d respectively. At point F, on the stress—strain curve,
tension cracks are first nucleated. The stress—strain curve quickly levels off as more tension cracks
are produced, and a visible macroscopic fault emerges close to the peak stress (see figure 114).
Figure 12 shows the corresponding volumetric strain AV/V (positive for contraction) against
the axial strain €,. After crack initiation, overall dilatancy due to microcracking is observed.
In this experiment the lateral confinement has been produced by very long springs. The
confining pressure remains essentially constant throughout the experiment up to the peak stress,
and even after the stress drops from Fy, to F, (figure 6). However, because of the formation
of faults, substantial lateral expansion occurs during the stress drop. Because of this lateral
expansion, the lateral pressure begins to increase, leading to greater resistance of the sample,
and hence to the portion F I’ in figure 6. Had the confining pressure been kept at its initial
constant value of o, = 5 MPa, the sample would have failed with continued stress drop.
Observe that the slight volume contraction indicated by the portion F F” in figure 12 is also
triggered by the increase in the confining pressure.
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Ficure 12. Axial strain plotted against volumetric strain for the specimen of figure 5a compressed axially with
o, =5 MPa.

3. BRITTLE-DUCTILE TRANSITION

Brittle failure by faulting is suppressed by sufficiently high confining pressures that promote:
more or less uniformly distributed inelastic deformation throughout the sample. Microscopically,
however, the deformation remains highly heterogeneous, in view of the microstructure of the
material. Depending on the material and the temperature, the inelastic deformation may stem
from grain-size microcracking, plastic glide, or a combination of the two. For example, in marble
and limestone, as well as in pyroxenes, microcracking and the associated cataclastic flow can
be inhibited at room temperature by large enough confining pressures, whereas for other
materials, such as quartz and feldspar, this requires higher temperatures (Donath ¢t al. 1971;
Tobin & Donath 1971; Olsson & Peng 1976; Tullis & Yund 1977; Kirby & Kronenberg
1984). In this section we present a simple mathematical model that seems to capture the essence
of these processes, compare the consequences of the model with experimental results, and show
that good qualitative and quantitative correlations are obtained. In addition we support the
mathematical model by some simple laboratory model experiments.

Before discussing the mathematical model it is instructive to examine the influence of
increasing lateral pressure on the interactive, unstable crack growth associated with a row of
pre-existing flaws, shown in figure 8 and discussed in §§2.3 and 2.4. For ¢ = 29°, y = 43°,
and d/c = 4, the results are shown in figure 13. It is seen that increasing the lateral pressure
suppresses the unstable growth of tension cracks emanating from the tips of the interacting flaws,
and therefore the associated faulting.

Figure 144, plate 4, shows a single flaw in a Columbia resin CR39 plate. The specimen is
compressed with constant stress ratio o,/o, = 0.05. Because of the presence of the lateral
confinement, o,, the growth of tension cracks emanating from the tips of the flaw is arrested
after a finite crack length is attained (see figure 144). The residual strain distribution in the
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Froure 13. Compressive force required to attain the associated length of cracks emanating from a row of pre-existing
flaws, under the indicated normalized lateral stresses (contours of || (ne)}/K,), with d/c = 4, y = 43° and
¢ = 29°.

unloaded specimen is shown by the photoelastic picture of figure 14¢. It is seen that extensive

plastic flow has occurred parallel to the pre-existing flaw, near its tips. On the basis of this

observation we shall present in this section a simple but effective mathematical model for
brittle-ductile transition. '

3.1. Mathematical model: brittle—ductile transition

The mathematical model is shown in figure 15. It consists of the frictional and cohesive
flaw PP” which has produced, at its tips, out-of-plane tension cracks PQ and P’Q’ of common
length [, as well as collinear plastic slips PR and P'R’ of common length /,. The boundary
conditions on the pre-existing flaw and the tension cracks are given, respectively, by (2.1) and
(2.2). The conditions on the slip lines PR and P'R’ are

Uy =y, Thy=—Ty, (3.1)

where 7y is the yield stress in shear. The principal stresses at infinity are prescribed to be o,
and o,. In this model the tension cracks are assumed to be straight; this is a good approximation
to the curved cracks like the ones shown in figure 1, as demonstrated by Horii & Nemat-Nasser
(19854). The plastic zones are modelled by dislocation lines collinear with the pre-existing flaw,
as motivated by the model experiments, although it is not difficult to consider a non-collinear
dislocation line or several such lines, depending on the circumstances. For a single, isolated flaw,
the use of collinear dislocation lines is reasonable and seems to yield adequate results.
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1.7.

Ficure 15. Pre-existing flaw PP, tension cracks PQ and P'Q)’, and plastic zones PR and P'R’.

The stresses at the ends of the plastic zones must be bounded. We seek a solution that renders
the mode II stress intensity factor at R and R’ zero, i.e. we require

KR =0, atRandR’. ; (3.2)

In what follows, we first present in §3.2 an exact formulation of the boundary-value problem
shown in figure 15 in terms of singular integral equations that can be solved numerically to
any desired degree of accuracy. We then use in §3.4 the numerical results presented in §3.3
to examine the physical implications of the proposed model. In §3.5 results of our model
experiments are compared with analytical results, and experimental observations on the
brittle-ductile transition of actual rocks are discussed. Finally, in §3.6 we present a simple
closed-form analytic solution of the boundary-value problem shown in figure 15 and, by
comparing results with those from the exact solution, show that this analytic estimate yields
reasonably accurate results. The reader who may not be interested in the detailed mathematical
formulation may skip §3.2 without a loss of continuity. '

, 3.2. Exact formulation
For the exact formulation of the elasticity boundary-value problem (figure 15), Muskhe-
lishvili’s (1953) complex stress functions @ and ¥ are employed. In terms of these potentials, the
stresses and displacements are given by
40, =2(F+P),

oy —0,+2ir,, = 220"+ V'), : (3.3)
2G(u, +in,) = k®— 28 - P,
where G is the shear modulus; k = 3—4 v for plane strain and k = (3—»)/(1 +v) for plane stress,

v being Poisson’s ratio; z = x+iy with i = 4/ —1; the overbar denotes the complex conjugate;
and prime stands for differentiation with respect to the argument.

33 A ‘ Vol. 319. A
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To solve the boundary-value problem, we introduce stress functions @P = @+ Py and
YD = Y + P, for a pair of antisymmetric dislocations at z, and —z, in the complex z-plane,
which satisfy the following conditions along PP’:

To+TR = #0y, O0g =0, (3.4)

where o, and 7, are the normal and shear stresses corresponding to the stress functions @, and
¥, for the pair of antisymmetric dislocations in an infinite plane, and oz and 7y are the stresses
associated with the supplementary stress functions @5 and ¥g. The functions @5 and ¥y, are
obtained in such a manner that the prescribed stress conditions (3.4) on the pre-existing flaw
PP’ are satisfied. In addition, we have the stress functions @* = @ + P and ¥° = PP+ PR
for the prescribed stresses at infinity. These stress functions must be such that the following
conditions are satisfied along PP’:

ToytTR = —Tct+poy, ogr=0, (3.5)

where 73, and o) are stress components at infinity corresponding to the stress functions &g
and P, and o and 7§ are the normal and shear stresses due to the supplementary stress
functions @§ and ¥{. Note that (3.4), and (3.5),, together with (3.10), are sufficient to satisfy
the continuity conditions (2.1),.

The stress potentials @z and ¥x, and PF’ and Pg’, that satisfy (3.4) and (3.5), respectively,
are obtained by the method of Muskhelishvili (1953); see, for example, Lo (1978) and
Nemat-Nasser (1983). The stress potentials are given as follows:
2z \

z—z . Z—Z —
8 Y,=&ln——az,5—,
z+z, z+z, z2°—2z5

@, =0aln

® = @B—ap) [F(z,25) + F(2,25)]1+ (Z,— 20) [#BG (2, 2,) + PG (2, )],
k= Pp— Pp—2P%, (3.6)
O =4(0y+0,), ¥

O = J(r5, —op +7) i1 —2/ (2 )],

—Y(oy—0,) e,

zy
Yo =112, —pol +7) i[ — 22/ (22— )i+ 22/ (22— ?)i— 2], )
with .
2 _ 2\} , \
F(z, Zo) = [ —i (Zg 62)1] 220 29
zy (22 —c%)2) 22— 2
0
Otz =5, o) (3.7)
_|i_2 (23"02)*] 22§ [ B 2z, ]/ 2_ 2
B [1 zy (22— %)t (22—z§)2+ 1 (z2—c?)k (22— c2)t (z z")’J

where @ = G([1,] +i[y,]) €/mi(k + 1), [u] = u* —u~, f = 1(1 +in), and & = &(Z). From (3.4)
and (3.5) it is seen that the stress functions @ = @P + @ and ¥ = PP + P= satisfy the second
condition of (2.1). Hence any collection of dislocations of the kind considered above will
automatically satisfy (2.1),.

Suitably distributed dislocations of densities a(r) and a,(¢) are now introduced to represent
the tension cracks, PQ and P’Q)’, and the plastic zones, PR and P'R’, respectively; a,(r) is a
complex function of 7(0 < r <) defined on the tension crack PQ; a,(t) is a function of
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t(0 < ¢t < [,) defined on the plastic zone Pl\{; it takes on purely imaginary values, so that the
- first condition of (3.1) is ensured. Since

Optit,g =D + & +e0 (20" + V), (3.8)
it follows from (2.2), and (3.1), that

h D’ — ” ’ b 7 D’ — % ’
L (DR + PR+ (z, PR + ¥Rt )]dr+f0 (PR + Dy +e(Z, Dy + PTY)] dt
+OP + B +e(Z PP+ ¥Y') =0, on PQ(0<s<y),

1 - N o
im{ [ 1op+ T4 7 08 + VR dr+ [ (OB + TG+ 508 + ¥R ar

+ P2+ B +Z, DX+ Wg’} =—1y, on PR(0<u< lp),l

where z, = c+sel, z, = c+u,
D2 = DP(c+se, c+relf;ar)), ¥a=VP(c+sel ctrelf; alr),

P = PP(c+s el e+ ta,(8)), = YP(c+sel c+t; (1),

&8 =5

DL = OP(c+u, c+r el ay(r)), = PP (c+u, c+retf;ar),

DD, = PP (c+u, c+t; (), ¥hp = ¥P(ctu, c+t;ay(t), |

O = P¥(c+se), PP =¥(c+sel), Op=0>&(c+u), and VP = ¥*(+u),
with @P(z, zy; &), ¥P(z, z4; &), P2(z), and ¥™(z) given in (3.6) ; Im {4} stands for the imaginary
part of 4. (The stress function @ depends on two independent complex variables, z, and z,
which respectively denote the position of the dislocation and the point at which ®P is evaluated.
In addition, P depends on the dislocation density a; hence we have written DO (zy,z;2).)

The first condition of (2.1) requires

f:‘ [y (r) + 2, (7)] dr = 0. (3.10)

Equation (3.9) can be rewritten as

1 16 (1) L
f t2ea(r) dr+f "Lic+s e, o+ et ay(r), ) dr

I 1 (s €0 —p) ezie] RN o210 ]}
+,[, {ap(t) [s e‘f’—t_ (s elf—1)t Fop(t) | et s de
l —— .
+J ’ L(c+s el c+t; ay(l), 0) di+ PP + DF + e (Z, OP" + ¥P') = 0,
0

for 0<s</,

| | \(3.11)
f D%’depr(cww“; ap(t), 0) d
0 :

§— 0

' L 1 u—re¥] 1 1
+iIm {fo {at(r) [u—r B (u—r ew)z]+at(f) [u—r e'w+u—r ew]} dr

i R
+f ' L(c+u, c+rel;ar), 0) dr+Op' + 0¥ +2,P5" + Y’;"’} = —iry,
0 .

for 0<u<lp,)
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. where

. _ ’ R’ 216/ =R 4 _L_i_ 210 | __ & _(Z+z_0)oa)
L(z,24;a,0) = ®f + Dy + (20} + ¥Pg) e e ( ¥z Gtz0Y) (3.12)

The stress intensity factors K; and Kj; at the tips Q and Q' of the tension cracks, and the shear
mode stress intensity factor KR at the end R of the plastic zone, are given in terms of the values -
of o and «;, as follows:

Kp+iKy = lim (2m)} e 2,(n) (I,— 1)},

T—)l‘
(3.13)
iKE = lim (2m)} a,(2) (I, — o)t
t->1p
From (3.13),, condition (3.2) requires
lim o, (2) (I,—i=0. (3.14)

t-»lp

Equations (3.11) with (3.10) form a system of integral equations for the dislocation densities
a; and a,. Solving this system of integral equations subject to the condition (3.2), i.e. (3.14),
we obtam the values of K;/7y(mc), Kn/‘ry(m)s and o,/7y for assumed values of 0 lyand [,
and given values of y, 0,/0,, # and 7,/7y.

3.3. Numerical results

The basic parameters of the mathematical model are: the orientation of the flaw, v ; the size
of the flaw, 2¢; the coefficient of friction, z; the flaw cohesion, 7,; the yield stress in shear, 7y,
of the material that surrounds the flaw; and the corresponding fracture toughness, K. In the
following, v is taken to be 45°, placing the flaw in the maximum shear stress direction. It has
been shown by Horii & Nemat-Nasser (19854) that the friction and cohesion of the flaw
produce similar effects, leading to essentially the same qualitative results; see their figure 5.
For illustration, our numerical results are based on g = 0.4 and 7, = 0. All calculations are
made for proportional loading, by using various constant stress ratios, d,/c,. The stresses are
normalized by using 7y, and the lengths are normalized by using half the flaw size, ¢.

The numerical calculations are made as follows:

1. For a given o,/0,, the normalized stress intensity factors, K;/7y(nc)t and KH/TY(m):
and the normalized axial stress, o, /7y, are calculated as functions of /¢, ly/c and 6.

2. The orientation, 6, of the tension cracks, PQ and P'Q)’ (figure 15), is chosen such that
Ki/lo|(me)? at Q and Q' is maximized. (The critical value of 6 is obtained for given values
of /y/¢ and [,/c and a fixed value of o,/c,.) As a typical example, K;/|o,|(mc)t is plotted as
a function of 6 in figure 16 for o/, =0, [,/c = 0.01, 0.1 and 0.5, and indicated values of
l;/¢ (contours). The “critical’ value of # corresponds to the peak of the associated curve in figure
16. This critical value is plotted in ﬁgpre 17 as a function of /¢ for /¢ = 0.1 and /0", = 0,
0.1 and 0.2. It is seen that the critical @ is about 70° when tension cracks are initiated, and
decreases with increasing crack length, approaching y = 45°. As pointed out by Nemat-Nasser
& Horii (1982), this implies that tension cracks initiate at the flaw tips at an angle of about
70° with respect to the flaw orientation, and then curve and grow toward the direction of
maximum compression.
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04 = (q) ™ () ™ ()
lt/t' = 0.01

Ky/lloryl(me)]

1 1 ]
80 80 40 60 80

6/deg - 0/deg 6/deg
Ficurke 16. Normalized opening-mode stress intensity factor at the tips of tension cracks as a function of the crack

orientation angle, for indicated crack lengths (contours of /;/¢) and plastic zone sizes: () ,/c = 0.01; (b)
b/e=0.1; (¢) I,/c =0.5. .

80

0/deg

lt/(«'

Ficure 17. The optimal crack orientation angle as a function of the crack length for indicated stress ratios
(contours of o,/0,); ¥ = 456° and /,/c = 0.1. Solid lines: K; > 0; broken lines, K; < 0.

3. For a fixed 0,/0, and given values of /;/c and [,/¢c, we obtain Ky/7y(me)t, Kip/7y(me)k
and o0,/7y corresponding to the critical §. Typical results are shown in figures 18-22 for
indicated values of ,/0, where contours of constant (a) K;/7y(nc)t and (8) |o,|/7y are plotted
in the /;/c, [,/c-plane. v

4. From figures 184-224, for each o,/0; we obtain a solution curve in the /;/c, [,/c-plane,
by making use of the following criteria:

when tension cracks are growing, K;= K, 1
when tension cracks are stationary, 0 < K; < K|, (3.15)
and when tension cracks are closing, K;=0,

where K, is prescribed. The corresponding axial load |o,|/7y is then established from data given
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Fiure 18. Contours of constant (a) Ky/7y(nc)t and (4) |oy|/7y in the [, ly-plane; g,/0, = 0.

/e

L/c /e

Ficure 19. Contours of constant (a) Ky/7y(nc)} and (4) |o,|/7y in the £, ly-plane; g,/0, = 0.05.

in figures 18-22. It is seen that different crack and plastic zone growth régimes are obtained
for different values of the normalized fracture toughness

4 = K J1y(mo)k. (3.16)

(Note that the normalized stress intensity factor is K;/Ty(fc)}, with the fracture criteria given
by (3.15).) We shall call 4 the ‘ductility’, whose value, as we shall see below, has a profound
effect on the general response predicted by the model.
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Ficure 20. Contours of constant (a) Ky/Ty(nc)t and (b) |o|/7y in the 4, lp-plane; o3/ = 0.1.
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Ficure 21. Contours of constant (a) Ky/7y(nc)t and (8) |oy|/7y in the I, l,-plane; o,/0, = 0.15.
Ficure 22. Contours of constant (a) Ky/7y(nc)! and (b) |o,|/ry in the 4, ly-plane; o,/0, = 0.2.

3.4. Discussion of model results

We shall now seek to explore the physical implications of our numerical results. We hasten
to emphasize that all of these will be based on our mathematical model and therefore when
we speak of, for example, a ‘brittle or ductile response’, it should be borne in mind that we
mean a ‘brittle or ductile response as predicted by our mathematical model’. As we shall show,
however, it turns out that these predictions are in good accord with reported experimental
observations. : »

There are essentially two quantities that characterize the model flaw: the coefficient of


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

360 H. HORIT AND S.NEMAT-NASSER

friction, ¢, and the cohesion, 7,/7y. The values of these parameters affect the quantitative
results, but they do not seem to alter in any substantial manner the qualitative nature of the
model’s physical implications. All the numerical calculations reported below are based on
p=04and7,=0.

On the other hand there are two parameters that have a most profound influence on both
the qualitative and quantitative character of the model’s results: one parameter is the ductility,
4 = K,/7y(mc)}, which is a measure of the material properties, and the other parameter is the
stress ratio, o,/ 0,, which defines the loading condition and, in particular, the effect of confining
pressure on the overall response.

Since with increasing temperature the fracture toughness, K, increases and the yield stress,
Ty, decreases, the ductility, 4, is an increasing function of temperature. It will be shown below
that when 4 exceeds a critical value, say 4, (in our calculation, 4, = 0.26), then plastic
deformation dominates any possible microcracking, for all values of the stress ratio ,/c,. (Here
and in what follows we restrict attention to the response under non-negative pressures, i.e. we
do not consider the response under hydrostatic tension.) Values of 4 at room temperature for
ductile metals, such as steel and aluminium, are relatively large (3 or 4 for steel and even greater
for aluminium, when grain-size microflaws are assumed). For many crystalline rocks with grain-
size microflaws, on the other hand, values of 4 are quite small at room temperature, being of the
order of a few percent. These materials, therefore, are brittle at room temperature, although
their response may be in a ‘brittle mode’ or a ‘ductile mode’, depending on the magnitude
of the stress ratio o,/0, as we shall discuss and illustrate in what follows.

An examination of the numerical results reveals three distinct modes for the growth régimes
of tension cracks and plastic zones at the tips of the model flaw. When 4 and o,/0, are suitably
small, tension cracks initiate and grow to a finite length, and the size of the plastic zones is
rather small. We shall refer to this as the ‘brittle mode’. When, on the other hand, 4 or ¢,/0,,
or both, are suitably large, plastic zones at the tips of the model flaw grow to a finite length
before any cracking takes place. We shall refer to this as the ‘ductile mode’. It turns out that
the model predicts another mode, which we shall call the  transitional mode’, where first the
plastic zones grow to a finite size before any cracking is initiated, but once the cracks are
initiated they grow in an unstable manner to a finite length, and the length of the plastic zones
decreases. The transitional mode occurs when the stress ratio is less than a threshold value,
say R;, and the ductility, 4, is greater than a threshold value, say 4,, but still less than 4.
These and related concepts are discussed and illustrated below.

3.4.1. Brittle mode

In our calculation 4, turns out to be about 0.12. For ductility 4 less than this value and
a stress ratio suitably small, the response is basically brittle, where, under an increasing axial
load, the tension crack growth initially dominates the growth of the plastic zones.

As mentioned in the previous subsection, a relation between the crack length and the plastic
zone size is established by using an appropriate figure from figures 184—22a and the fracture
criteria (3.15). A typical example is shown in figure 214 for ,/0; = 0.15 and 4 = 0.02. The
curve starts at the origin; /,/c = 0 and l,/c = 0. As the axial load is increased, only the plastic
zones develop, until the crack nucleation condition, K; = K|, is attained. This occurs at point
A whenl,/c = 0.002, a negligibly small value. Upon further increase in axial stress at a constant
~ stress ratio, both the tension cracks and the plastic zones grow monotonically, as indicated by
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the contour corresponding to K;/7y(mc)t = 4 = 0.02, from A to B. At B the tension cracks attain
their maximum size, after which, according to this model, the plastic zones continue to grow,
relaxing the stress field at the crack tips and possibly causing partial crack closure. This occurs
at point C, where the stress intensity factor, Ky, vanishes. From C to D the size of the ‘open’
portions of the tension cracks is reduced, so that the K; = 0 condition is maintained. We refer
to this type of crack and plastic zone growth régime as the ‘brittle mode’, which is characterized
by the initial part of the curve where tension crack growth dominates the plastic flow.

Similar results are obtained for other values of 4 and o,/0, from figures 184-224a. With the
curvein the y/¢, [, /c-plane so established, the axial load can be calculated from figures 18 5-225.
Figures 23 and 24 illustrate the crack and plastic zone growth régimes, and yield the relations
between the axial load and the lengths of the crack and the plastic zone for 4 = 0.04 and 0.08.
It is seen that tension cracks cease to grow when the plastic zones attain a size comparable
with the crack length. The growth of the plastic zones accelerates after the tension cracks attain
their maximum length.

®)

.——"'—‘_-—-
5 —— "____.—-
ST
7 // 0‘24 15’__—— -
s DM
2 o010 012—
Ut e i
oz ==0—"005
42"
19
[N
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B - (Y
o)
S
o2
)
| 1 1 |
0 1 2 0 1 2
l/e L/e, lyfc

Ficure 23. (2) Relation between the tension crack length and the size of the plastic zone under the proportional
loading and indicated stress ratios (contours of o'3/d); (b) the corresponding relation between the axial load
and the lengths of the tension crack (solid lines) and the plastic zone (broken lines). Ductility, 4 = 0.04.

As discussed later, the maximum length of the tension cracks may be regarded as representing
a measure of the underlying brittleness. This maximum length decreases with an increasing
stress ratio, and eventually becomes negligibly small as the stress ratio is increased. At a certain
stress ratio, the brittle mode changes to the ductile one, as discussed below.

3.4.2. Duqtile mode

To examine the crack growth régime at very small crack lengths, contours of constant stress
intensity factor, K;/Ty(mc)}, are plotted in figure 25. (These figures are similar to those in figures
1842-22a, but with the /,-axis magnified ten times.) From figure 25 and fracture criteria (3.15),

34 . Vol. 319. A
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FiGure 24. (a) Relation between the tension crack length and the size of the plastic zone under the proportional

loading and indicated stress ratios (contours of ¢,/d,); (b) the corresponding relation between the axial load
and the lengths of the tension crack (solid lines) and the plastic zone (broken lines). Ductility, 4 = 0.08.
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F1Gure 25. Contours of constant Ky/7y ()} in the , lp-plane, for stress ratios, o3/0, of: (a) 0; (8) 0.1;
{c) 0.2; (d) 0.3.

the crack and plastic zone growth régimes are obtained. Comparing with figure 21 4, we observe
a different pattern of crack and plastic zone growth in figure 254 for o,/0, = 0.3 and
K, /Ty (mc)t = 0.08. Here the size of the plastic zones increases with increasing axial load,
attaining a finite value, before cracks are initiated at point A. Even after crack initiation, the
plastic zones continue to grow at a much faster rate than do the cracks, e.g. curve AB. A process
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of this kind characterizes the ‘ductile mode’. The change from brittle to ductile mode is
illustrated in figure 264, b for 4 = 0.04 and 0.08 respectively. It is seen that this change occurs
when the stress ratio increases from 0.325 to 0.35 for 4 = 0.04 and from 0.25 to 0.275 for
4 = 0.08.

(a) S »)
2r
v
g
[Te) le
§ 8 &
- S (=] [}
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3
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N
@
(=]

_J If é 02

0 0.05 01 0 005 0.1
/e /e

Ficure 26. Relation between the tension crack length and the size of the plastic zone under proportional
loading for indicated stress ratios (contours of o,/a,), for (a) 4 = 0.04 and (4) 4 = 0.08.

The threshold stress ratio, above which the response would be in the ductile mode, decreases
as 4 increases (or as the temperature increases). It is seen from figure 254 that if 4 is greater
than 0.26, the response is in the ductile mode even with zero stress ratio, i.e. under uniaxial
compression.

3.4.3. Transitional mode

The numerical results show the existence of a threshold value for the ductility, denoted here
by 4, (ca. 0.12), below which the growth of tension cracks and plastic zones is either in the
brittle mode or in the ductile mode, as described above, depending on the stress ratio. In the
brittle mode, the growth of cracks and plastic zones is stable, i.e. an increase in the axial load
is required to increase the crack length and the plastic zone size (see figures 235 and 245). On
the other hand, if the ductility, 4, is intermediate (4, & 0.12 < 4 < 4, ~ 0.26) and the stress
ratio is small, we have a ‘transitional mode’, which is characterized by large plastic zones
developing ‘before crack initiation, and by unstable crack growth, accompanied by the
shortening of plastic zones after crack initiation.

In the transitional mode the plastic zones first emerge and grow with increasing axial load
until the condition for crack initiation is satisfied, i.e. until K; = K. At this stage, tension cracks
suddenly grow in an unstable manner, attaining a finite length, while the calculated size of
the plastic zones decreases. (It is seen from figure 25 that with a relatively large 4, the
equilibrium curves K;/7y(mc)t = 4, following the initial plastic zone growth, show a decrease
in plastic zone length [ /c. The corresponding axial loads along these curves decrease and
increase again, which results in an unstable crack growth.) Typical crack and plastic zone
growth régimes are shown in figure 27 for 4 = 0.16. Figure 275 displays a portion of figure

34-2
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Ficure 27. Relation between the tension crack length and the size of the plastic zone under proportional loading
for indicated stress ratios (contours of o7, /0, ) ; solid curves for stable crack growth, dot—dashed lines for unstable
crack growth, and broken curves for equilibrium states. Ductility, 4 = 0.16.

27 a, corresponding to small tension crack sizes. The solid and broken lines are equilibrium
curves for indicated stress ratios; the solid lines are for stable growth. The dot-dashed lines
indicate unstable crack grdwth accompanied by the shortening of plastic zone length. (Our
calculations do not include the details of unloading with residual plastic strains.)
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3.4.4. Brittle—ductile transition

From the results discussed above in this section, one may seek to quantify the brittle—ductile
transition in terms of the variation of the material ductility, here identified by 4, and the
pressure, here presented by the stress ratio, o,/0,. The maximum length of the tension cracks
represents a measure of the brittleness of the process. This maximum length is plotted as a
function of o,/0, for indicated 4 in figure 28. Solid lines correspond to the response in the
brittle mode, and broken lines to the response in the transitional mode. The _shaded area
represents response in the ductile mode, where a maximum length for the tension cracks is not

Y o

’_] defined. All curves fall quickly with an increasing stress ratio, indicating the effect of pressure
< in suppressing brittleness. The maximum crack size at the same stress ratio decreases with
> E increasing 4. The transition from the brittle to the ductile mode occurs at lower stress ratios
2 25} for larger values of 4, indicating the influence of temperature in promoting ductile behaviour.
0 5 The curve associated with 4 = 0 displays the limit of brittleness. Even for this limiting case,
anf@) the brittle response is seen to be suppressed at suitably large stress ratios.

=w

3.4.5. Brittle—ductile diagram

It has been shown above that three different response modes are obtained depending on 4
and o,/0,. From results of figure 28 we may represent these schematically in a brittle-ductile
diagram (see figure 29). (Note that these results are based on fixed #(= 0.4) and 7.(= 0) that
characterize the properties of the flaw, and on a fixed flaw orientation, y(= 45°).) Curve ABC
represents the threshold stress ratio above which the response would be in the ductile mode.
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Ficure 28. Maximum crack length as a function of the stress ratio for indicated ductilities (contours); circles
are the results of model experiments (open, ¢ = 1.8 cm; filled, ¢ = 0.9 cm).
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FiGURE 29, Brittle-ductile diagram.

The threshold stress ratio decreases as the ductility 4 increases. Below this curve, the response
is in the brittle mode when 4 is less than 4, ~ 0.12, and is in the transitional mode when 4
is greater than this. With the ductility greater than 4, &~ 0.26, the response is in the ductile
mode independently of the value of the stress ratio.
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3.5. Comparison with experimental results

A series of model experiments on Columbia resin CR39 plates containing a single flaw is
performed for ¢ = 9mm and 7,/0, = 0.025, 0.05 and 0.1, and for ¢ = 18 mm and o,/0, = 0.1
and 0.15; one of these is shown in figure 14. In all cases the tension cracks are arrested once
they attain a finite length, because of the presence of lateral pressure (see figures 30 and 31,
plate 5). The observed maximum crack lengths (/,/¢) . are plotted in figure 28. Itis seen that
the data for ¢ = 9 mm and 18 mm fall on the curves for 4 = 0.15 and 0.1, respectively. From
these results it follows that K,/7y for this material is about 0.8 mm}; with this value,
4 = K, /1y(nc)t = 0.151 forc = 9 mm and 4 = 0.106 for ¢ = 18 mm. It also should be pointed
out that the observed crack growth is basically unstable for all the specimens with ¢ = 9 mm,
whereas it is stable for all the specimens with ¢ = 18 mm. These observations agree well with
our analytical results. _ 7 v

Experiments on actual rock samples have shown the response in triaxial compression to
change from brittle to ductile as the confining pressure is increased. Mogi (1966) has
summarized experimental data for different rocks (see figure 32). In these figures the ultimate
strength of the specimen with brittle failure is marked with solid symbols. The stresses
corresponding to the knee of the stress—strain curve are plotted with open and semi-solid svmbols
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compressive strength, (o, —a,)/kbar
®
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| |
4 : 0 2 4
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FIGURE 32. Variation of compressive strength with confining pressure for (a) silicate rocks and (b) carbonate
rocks. (From Mogi (1966).)
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for the ductile response and the transitional response, respectively. It is seen that an increase
in the stress ratio from 0.2 to 0.3 results in a change from brittle failure to ductile deformation.
Our analytical results (figure 28) are in accord with this interesting feature. According to our
model, the maximum crack length —a measure of the brittleness of the process — decreases
dramatically with increasing stress ratio, and when this ratio changes from 0.2 to 0.3, the size
of the tension cracks becomes negligibly small.

Figure 33 a, plate 6, shows two collinear flaws. The plate is compressed, keeping o, /o, = 0.05.
Figure 335 shows arrested tension cracks at the tips of the flaws. Figure 33¢ is the photoelastic
picture showing the residual strains due to the plastic deformation in the unloaded specimen.
The maximum plastic deformation takes place between the pre-existing flaws. In the actual
rock specimen, the effects of the interaction between adjacent cracks and adjacent plastic zones
are considered to be important to the brittle-ductile transition process. However, the proposed
model seems to capture certain fundamental features observed experimentally, even though
it does not include these interaction effects.

3.6. Analytic estimate

The solution of integral equations (3.10) dnd (3.11) requires rather involved numerical
calculations. In certain applications a simple closed-form analytic estimate, albeit approximate,
may prove more useful. In this section we present such an approximate solution, and using
the exact results, show that the solution yields reasonable results for responses in the brittle mode,
i.e. when ductility is about 0.1 or less. |

An examination of figure 25 reveals a rather complex relation between the length of the
tension cracks and that of the plastic zones when these quantities are small and when the
ductility exceeds 4,. On the other hand, when the ductility is suitably small and the size of
the tension cracks is suitably large relative to the size of the plastic zones, the interaction effects
between the cracks and the plastic zones seem to be less important. Therefore, for this range
of response, one may seek to estimate the stress intensity factor Kj at the crack tips Q and Q’
in figure 15 and the corresponding axial load, in terms of /;/¢, [,/¢c and o,/a,, by completely
ignoring the interaction effects.

To this end, one may estimate K; at the crack tips from (2.6), which does not involve the
size of the plastic zones. Then one may use the Dugdale model (Dugdale 1960) in mode 11
to estimate the axial stress corresponding to the plastic zone size, such that K& vanishes at points
R and R’ in figure 15. As shown in figure 34, one may consider a mode II crack with the
boundary condition '

Toy = —Tay—Tetpoy, on |x <, } (3.17)

—_ —®
Ty =—Toy—Ty, on ¢<|r| <c+i,

Since the stress intensity factor is given by

= (—r — S L' [1 _ arcsi (_1_)]
Ky = (=13 —Tctuoy) [nlc+1) ]+ (et )T 2(¢+1,) |4n —arcsin 7)) (3.18)

the condition (3.2) yields

M=o —Ty) g (3.19)

[ /c = cosec
O T )
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v v

% | | Iy

— -
ST I Aﬁ}—rﬁw?

Ty ' / T Ty

)

! o }

Ficure 34

Substitution for 7, and some manipulation then result in

b(—O‘l)/TY - [2+E(T‘;/TY_ 1) arcsin (1 +lp/?)]/.

"{(1 —0,/0,) sin 2y—p[l+0,/0,—(1—0,/0,) cos 2y] % arcsin (1 +11 /C)} :
: P
(3.20)

- We now propose to use (2.6), and (8.20) for calculating K;/7y(n¢c)t and o, /ay. Indeed, from
(2.6) one easily obtains the expression

K sin 0 (—ay) | -
TY(TEC)i (lt/c+l*/c) { [(1 oy/0y) sin 2y —p(1+0,/0,—(1—0,/0,) cos 27)]__;}

— (M =T 411 40, /0,— (1=, /0,) cos 20—y)], (3.21)
Y

where (— al) /Ty is given by (3.20).

It remains to show the accuracy of these estimates. To this end, we have plotted in figure
35 the estimated relations between /;/c and /,/¢ by broken lines, together with the numerical
results of the exact formulation, by solid lines. It is seen that for ductility less than or equal

2 (%) (0
=]
31
| | ] l
0 2 1 2
L/e L/ L/

Ficure 35. Contours of constant Ky/1¢(me)d in the I, Ip-plane for indicated stress ratios, o,/0y: (a) 0; (6) 0.05; (¢) -

0.1. Solid curves are from the exact (numerical) calculation and broken curves are from the analytlc estimate
(3.21).
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to 0.1, the estimates are reasonably accurate, especially in the range of loading before the
formation of large plastic zones. However, the approximate estimate for the response in
the brittle mode does not yield a maximum value for the size of the tension cracks, whereas the
exact calculation does. Referring to the exact results displayed in figures 18-27, note that the
maximum size of the tension cracks is attained at a stage where the size of the plastic zones-
is almost the same as that of the tension cracks. With this information in mind, we define for
the approximate solution the measure of brittleness to be the size of the tension cracks when
I, = I.. In figure 36 we have plotted this measure of brittleness as a function of the stress ratio

15—

( )s (b/€)max
(“_—): (lt/ c)u—lp

o/oy

FicurE 36. Maximum crack length as a function of stress ratio for indicated ducuhty, 4: solid curves are from the
exact (numerical) calculation, and broken curves are from the analytlc estimates (2.6) and (3.21) for [, = /..

and the ductility, together with the curves corresponding to the maximum size of the tension
cracks taken from figure 28. It is seen that the approximate results are quite good estimates
for ductility less than 0.1.

This work was supported by the U.S. Air Force Office of Scientific Research under grant
no. AFOSR-84-0004 to Northwestern University and grant no. AFOSR-86-0035 to the
University of California, San Diego.

APPENDIX A

With reference to ﬁgure 1, let the common length of the curved cracks PQ and P'Q’ be /,
and the profile of PQ be deﬁned by x = ¢+g(r) and y = f(r), where r measures length along
PQ, The required stress potentials are given by (3.6). Hence, considering dislocations of densxty
a(r), suitably distributed on PQ and P’Q’, from (2.2) and (3.8) we obtain

f [¢D'+’(5T>7+em (200" 4 P17)] dr+ &% + B 4 19 (ZP>"+¥>') =0, (A1)
. |

with «
zy=c+g(r)+iflr), z=rc+g(s)+ifls), a=a(r), O=tan'[f(5)/g'()]. - (A2)
35 Vol. 319. A
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The first condition of (2.1) requires

f [a(r) +a(r)]dr = (A 3)

Equation (A 1) can be rewritten as

1 -
J Aty f [aly+aL,)dr+ (15— pog +75) S+og +irh =0,  (A4)
0
where
M,(r,s5) = l/h—ezmli/hz, M,(r,s) = l/h—+ezw/h, \

h(r,s) = [g(s) —&(r) +i(f(s) =A(r)1/ (s —7),

L,(r,2,6) = BULF(z,2,) + F(2,Z5)} + BU{(2,— Z5) G (2, zo)}-z_:zo“w (zzj : 2)2’

L(2,0) =~ (2, ) + F(z, T} =AU =20) O(o Tl =g e
ULF(z,20)} = UL03 F(z,20)} = = F(2, 20) + F(Z, 20) + €¥[2F (2, 20) + (2= 2) F (2, )],

z z ai0 | (Z—2)¢? 2z
560 = {2

R +iTH = BF' + B’ + e (20" + P), )

(A5)

with z = z(s), z, = zy(r) and 6 = 6(s) given by (A 2). Equations (A 4), with (A 3), define the
dislocation density a. Solving (A 4) subject to (A 3), we obtain the stress intensity factors at
the tips, Q and Q’, of the curved cracks PQ and P’Q’ from

Ky+iKyy = lim3(@m)} (1= 1)} [ae(r) M, (r, 1) +a() M, (r, )], (A 6)
r—>1

When PQ and P’Q)’ are straight lines, we obtain
M, =0, M, = 2¢*%, (s) = 6 = const., z = c+sel, and z, = c+rel’. (A 7)

In this case the formulation becomes identical with that of Nemat-Nasser & Horii (1982), except
for F(z, zy) and G(z, z,), which are given by (3.7) (see Nemat-Nasser 1983 ; Horii & Nemat-Nasser
1983, 19854a).

For curved crack extensions, with given crack profile, f(r) and g(r), the singular integral
equation (A 4), subject to the constraint (A 3), is solved by using the numerical method of
Gerasoulis & Srivastav (1981). The crack profile is obtained incrementally where we consider
a sequence of incremental straight extensions, each with an orientation that maximizes the
opening-mode stress intensity factor, Kj, at the extended crack tip.

Nemat-Nasser & Horii (1982) suggest an approximate scheme for calculating the crack
profile, on the basis of the results of the straight crack extension calculations; see their equatidns ‘
(21) and the corresponding discussion. Horii & Nemat-Nasser (19854) show that the straight
crack extension model is in good accord with the more complete curved crack extension
solution, and, for the sake of simplicity in calculation, they use this model in their analysis of
faulting.
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The method of pseudo-tractions requires an explicit solution of the singular integral equation
(A 4). This integral equation can, of course, be solved as accurately as desired. However, for
application to the analysis of unstable growth of cracks emanating from the tips of a row of
pre-existing flaws, the stress intensity factor and other parameters must be calculated repeatedly
for various values of confining pressure, individual flaw orientation, and other relevant
parameters. To simplify this procedure, Horii & Nemat-Nasser (1985 ) introduce the following
approximate method for the solution of (A 4), which seems to yield adequately accurate results.

First, the distribution of the dislocation density is approximated by

a(r) = {1/[r(l—n) 1} [p®(2r/1— 1) +in'r/1], (A8)

which satisfies (A 3), where #® and %! are two real unknown parameters to be determined.
Then the integrand of the second term in (A 4) is estimated by

a(r) Ly(r, z,0) + a(r) Ly(r, 2,0) = {1/[r({—r)FH{[(9® +iy") L,(1, 2, 6)
+ (R —in") Ly(l, 2, 0)] /1= 9'[L,(0,2,0) + Ly(0,2,0)] (1 —1/D)}.  (A9)
The integral équation (A 4) now becomes

[Al Az] [ﬂR] _ [('rfy—/w;" +7,) Re [S] +a'3°] (A 10)
4, AJdly! (r5y—noy +7,) Im [S]+7% ’

where . ,
A, +idy = %n[(S/l)e“’—Ll(l, 2,0)—L,(l,2,0)+L,(0,2z,0)+ L,(0,2,6)],

} (A 11)
— A, +idy = In[(4/De+ L, (1, 2,6) + Ly(1, 2,0)].

Since s may be suitably chosen, for convenience the following expressions are used:

—0.075({/c) +0.475, for l/c< 1,
s/l ={—0.0074(l/c)*+0.0156(I/c)2—0.104(//c) +0.489, for 1<l/c<4,} (A12)
—0.015(!/c) +0.335, for 4 <l/c.
From (A 6-A 8), we finally have :
K;+iKy = (2n)t elf(yR—ig) /L. (A 13)

Equations (A 10) are solved for #® and 7', and the stress intensity factors at the tips of straight
crack extensions are obtained from (A 13). Adopting the fracture criterion that the most
favourable orientation of the crack extension results in the maximum Kj, we calculate the crack
orientation angle, 6.

Horii & Nemat-Nasser (19854a) compare the results of this approximate solution with those
of the exact analysis, arriving at a reasonably good correlation; see their figure A 5.

APPENDIX B

The elasticity problem to be solved is shown in figure 8; see §2.3. It is solved by making
use of the method of pseudo-tractions (Horii & Nemat-Nasser 19854). In this method, the
solution to the original problem is obtained by the superposition of the solutions of a number
of sub-problems and the uniform far-field stresses. Each sub-problem involves an infinite

35-2
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homogeneous solid containing only one of the flaws and its associated cracks. For each
sub-problem, the boundary conditions along the typical pre-existing flaw PP’ are

uy =uy, T +1L,+75 =—T.+p(o,+0f+0y), (B 1)

and along the corresponding cracks PQ) and P'Q)’,
oo+of+0P =0, T+TE+TG=0. (B 2)

The quantities ¥, 75, 0§ and 7} are called the ‘pseudo-tractions’. They are the unknown
functions that must be determined in such a manner as to satisfy all boundary conditions of
the original problem. The requirement that the superposition of the sub-problems must be
equivalent to the original problem leads to a system of integral equations for these pseudo-
tractions. These equations are the ‘consistency conditions’. By making the unknown pseudo-
tractions discrete, the system of integral equations is reduced to a system of algebraic equations.
Because of symmetry, the pseudo-tractions are the same for all inhomogeneities. For simplicity
we approximate the pseudo-tractions by piecewise constant functions, i.e. we assume that o}
and 7E, are constants along PP’, and ¢} and 7}, are constants along PQ and P'Q’.

Followmg the approximate method proposed in Appcndlx A, the solution of a typical
sub-problem is given by

A, A, (1 +75,—u(03 +0F) +7.] Re [S]+ 05 + 0
[A A]['ry ] [['r +1',::, ,u(0'°°+0'P)+70] Im [S]+'r‘9 0] (B 3)

where § is given in (A 5), and the 4 are given in (A 11).
The normal and shear tractions, 7y and 7,,, acting at a point z on a plane inclined from
the x-direction by the angle ¥, are given by

oy +it,, = Bi(2, ) 9%+ By(2,¥) 0+ [15, + 12y —p(0p +07) +7.1S(2,¥),  (B4)

thre
B,(z,¥) = 2Re[2], - 1,] +el¥ (26, —I1,+ 211, —I1,) )
+%n[L1 (Lz,¥)+ Ly(l,z,9¥)— L(0,2,¥) — Ly(0,2,9)], (B 5)
By(z, ) = —2Im [L] +i ™ (— I, + IL) + §aLy (b 2,9 — Lo(b 2 V)],
with

1 rdr e 16 z—¢ )
h= f =N (z—c—re®) {[(Z—C) (z—2z)]t —1}’
dr _ T
0 ['(1—')]% (z—c—re) " [(z—0) (z—2z) ¥’
_ 1t rz—c—re)dr
==} |, G omems &7
_e“*i"1t {(z—c) [(z—¢) (8z2—8z,—z+c)+ (z—¢) (z,—¢) € ;
l 2[(z—¢) (z—2z,) ]} - }’
L (z—c—re9)dr
o [rI—n1t (zf-c—r elf)?
_€M(2—0) (z,—0)—(z2—¢) (z—c+z—2,) ¥
l 2[(z—c) (z—z,) ]} ’ /

(B6)

I, =—
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Then the ‘consistency conditions’ lead to

OB +irE, = Cyn® + Gyt + [15, + 78, — (0§ +08) +7.] F“,} -
of +ity = CEyR+ Oy + 15 + 75, —p(07 +07) + 7] FY,
2 X ® )
where C§ = 2 By(25,,0)+2 X By(zy,0),
n=1 m=2
C; = N z [Bj(z;me) +Bj(zln’0)] +2 X Bj(zm’ 0),
n=1 : cm=2
B . (BS)
FC=X7 Y 8(z5,,00+2 X S(z,,0),
n=1 m=2
1y | =
Fe =W Z [S(Z{n,0)+S(Zin,0)]+2 z S(zmaa)’
n=1 m=2 : )
with 2%, =del@N—c+2(n—1)/(N—1), 2z, =mde®7), .
2, =de®Vtc+lelf(n—1)/(N—1), ' ; (B9)

2, =de@-N—c—le(n—1)/(N-1).

In (B 7) the first term in the right-hand side of each equation corresponds to the tractions on
one particular inhomogeneity, produced because of the presence of the adjacent inhomo-
geneities, and the second term corresponds to those produced by all other inhomogeneities. The
second term in (B 7) can be expanded in even powers of ¢/md and, in this manner, each series
can be summed. In the numerical calculations N is taken to be 10, and terms of an order higher
than (¢/d)° are neglected. ‘

For given d/c, v, ¢, 0,/0,, l/c and 0, the system of algebraic equations (B 2) and (B 6) is
solved for 4%, 9%, 6%, 75, o'F and 7F;. Then the stress intensity factors at the tips of the extended
cracks are obtained from (A 13). The crack orientation angle 6 is determined such that the
opening-mode stress intensity factor, Kj, is maximized. Setting K; equal to the fracture
toughness, K., we obtain the required axial compression, @, for a given crack extension length
le.

For fixed d/c, y and @, we calculate the axial compression, 7, for each crack extension length,
I/c, and for different values of ,/d,. It turns out that the plot of o, as a function of ¢, for
each I/c is a straight line. From results of this kind we can now calculate various required
parameters for a constant confining pressure o, rather than for a constant stress ratio, 7,/0.
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FIGURE 5. (a) Specimen containing a large number of flaws. (§) Under axial compression without confinement, cracks nucleate first at larger flaws; (¢) axial splitting
by the growth and coalescence of cracks; (d) shattering of a part of the specimen while many flaws in the remaining part are inactive.



http://rsta.royalsocietypublishing.org/

—

3~
olm
e
)
=0
=

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROY
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Ficure 7. (a) Specimen containing a row of small flaws and several larger flaws. () Axial splitting under axial compression without lateral confinement:
(¢) shear failure under axial compression with lateral confinement. (From Horii & Nemat-Nasser (19854).)
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Ficure 11. (a) Specimen containing a large number of flaws. (b) Under axial compression with lateral pressure o, = 5 MPa, cracks nucleate at larger flaws:
(¢) cracks at larger flaws are arrested; (d) cracks nucleate at smaller flaws, leading to the formation of a fault.
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“IGURE 14. (a) A specimen with a pre-existing flaw. (b) Arrested tension cracks under axial and lateral compressive stresses of constant ratio

o,/o, = 0.05. (¢) Photoelastic picture of the unloaded specimen showing the residual strain distribution.
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IGURE 30. Arrested tension cracks emanating from the tips of a 1.8 cm pre-existing flaw for indicated stress ratios,
ag,/0,: (a) 0.025; (b) 0.05; (¢) 0.1.
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IGURE 31. Arrested tension cracks

emanating from the tips of a 3.6 cm pre-existing flaw for indicated stress ratios,
oy/0,: (a) 0.1; (b) 0.15.
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Ficure 33. (a) A specimen with two colinear flaws. (4) Arrested tension cracks emanating from the ends of the flaws under axial and lateral
compressive stresses of constant ratio o,/0, = 0.05. (¢) Photoelastic picture of the unloaded specimen showing the residual strain distribution.
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